• 更多栏目

    林林

    • 教授     博士生导师   硕士生导师
    • 主要任职:软件学院、大连理工大学-立命馆大学国际信息与软件学院副院长
    • 性别:男
    • 毕业院校:日本早稻田大学
    • 学位:博士
    • 所在单位:软件学院、国际信息与软件学院
    • 学科:软件工程
    • 办公地点:开发区校区 信息楼305
    • 电子邮箱:lin@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    MetaSelection: Metaheuristic Sub-Structure Selection for Neural Network Pruning Using Evolutionary Algorithm

    点击次数:

    论文类型:会议论文

    发表时间:2021-07-08

    卷号:325

    页面范围:2808-2815

    摘要:Neural network pruning is widely applied to various mobile applications. Previous pruning methods mainly leverage ad-hoc criteria to evaluate channel importance. In this paper, we propose an effective metaheuristic sub-structure selection (MetaSelection) method for neural network pruning. MetaSelection exploits evolutionary algorithm (EA) to search the proper sub-structure satisfying the resource constraints. In comparison with previous AutoML based methods, MetaSelection can automatically achieve the pruning rate and channel selection at the same time instead of hand-crafted criteria in a cascaded way. Regarding the tremendous search space of channel selection as a combinatorial optimization problem, we further utilize a coarse-to-fine strategy and the novel probability distribution crossover (PDC) to speed up the search procedure. Besides, MetaSelection prunes the network globally rather than in a layer-by-layer way. We evaluate MetaSelection on several appealing deep neural networks, achieving superior results with adaptive depth and width. Concretely, on ImageNet, MetaSelection achieves a top-1 accuracy of 71.5% on MobileNetV2 under 70% FLOPs constraint and a FLOPs reduction of 30% with 76.4% top-1 accuracy for ResNet-50.