Hits:
Indexed by:会议论文
Date of Publication:2019-01-01
Included Journals:EI、CPCI-S
Volume:2019-June
Page Number:9888-9897
Abstract:This paper focuses on the topic of vision based hand pose estimation from single depth map using convolutional neural network (CNN). Our main contributions lie in designing a new pose regression network architecture named CrossInfoNet. The proposed CrossInfoNet decomposes hand pose estimation task into palm pose estimation sub-task and finger pose estimation sub-task, and adopts two-branch cross connection structure to share the beneficial complementary information between the sub-tasks. Our work is inspired by multi-task information sharing mechanism, which has been few discussed in hand pose estimation using depth data in previous publications. In addition, we propose a heat-map guided feature extraction structure to get better feature maps, and train the complete network end-to-end. The effectiveness of the proposed CrossInfoNet is evaluated with extensively self-comparative experiments and in comparison with state-of-the-art methods on four public hand pose datasets. The code is available in.