• 更多栏目
    • 语种

    李涛

    • 副教授     博士生导师   硕士生导师
    • 性别:女
    • 毕业院校:哈尔滨工业大学
    • 学位:博士
    • 所在单位:机械工程学院
    • 学科:机械设计及理论. 工业工程. 机械制造及其自动化
    • 办公地点:机械楼8027室
    • 联系方式:18941330991
    • 电子邮箱:litao@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Energy Consumption and Saving Analysis for Laser Engineered Net Shaping of Metal Powders

    点击次数:

    论文类型:期刊论文

    发表时间:2016-10-01

    发表刊物:ENERGIES

    收录刊物:SCIE、EI、Scopus

    卷号:9

    期号:10

    ISSN号:1996-1073

    关键字:energy consumption; laser engineered net shaping; ultrasonic vibration

    摘要:With the increasing awareness of environmental protection and sustainable manufacturing, the environmental impact of laser additive manufacturing (LAM) technology has been attracting more and more attention. Aiming to quantitatively analyze the energy consumption and extract possible ways to save energy during the LAM process, this investigation studies the effects of input variables including laser power, scanning speed, and powder feed rate on the overall energy consumption during the laser deposition processes. Considering microhardness as a standard quality, the energy consumption of unit deposition volume (ECUDV, in J/mm(3)) is proposed as a measure for the average applied energy of the fabricated metal part. The potential energy-saving benefits of the ultrasonic vibration-assisted laser engineering net shaping (LENS) process are also examined in this paper. The experimental results suggest that the theoretical and actual values of the energy consumption present different trends along with the same input variables. It is possible to reduce the energy consumption and, at the same time, maintain a good part quality and the optimal combination of the parameters referring to Inconel 718 as a material is laser power of 300 W, scanning speed of 8.47 mm/s and powder feed rate of 4 rpm. When the geometry shaping and microhardness are selected as evaluating criterions, American Iron and Steel Institute (AISI) 4140 powder will cause the largest energy consumption per unit volume. The ultrasonic vibration-assisted LENS process cannot only improve the clad quality, but can also decrease the energy consumption to a considerable extent.