刘薇

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:环境学院副院长

其他任职:环境学院教工党支部副书记

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:环境学院

联系方式:Email:Liu_wei@dlut.edu.cn

电子邮箱:liu_wei@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Effects of Subchronic Exposure to Low-Dose Volatile Organic Compounds on Lung Inflammation in Mice

点击次数:

论文类型:期刊论文

发表时间:2014-09-01

发表刊物:ENVIRONMENTAL TOXICOLOGY

收录刊物:SCIE、PubMed、Scopus

卷号:29

期号:9

页面范围:1089-1097

ISSN号:1520-4081

关键字:VOCs; lung inflammation; ROS; mice; mediator

摘要:Inflammatory lung diseases are characterized by chronic inflammation and oxidant/antioxidant imbalance. Exposure to some kinds of volatile organic compounds (VOCs) leads to lung inflammation, oxidative stress, and immune modulation. However, it is suspected that sub-chronic exposure to low-dose VOCs mixture induces or aggravates lung inflammation. To clarify the effect of this exposure on lung inflammatory responses, 40 male Kunming mice were exposed in four similar static chambers, 0 (control) and three different doses of VOCs mixture (groups 1-3). The concentrations of VOCs mixture were as follows: formaldehyde, benzene, toluene, and xylene 0.10 + 0.11 + 0.20 + 0.20 mg/m(3), 0.50 + 0.55 + 1.00 + 1.00 mg/m(3), 1.00 + 1.10 + 2.00 + 2.00 mg/m(3), respectively, which corresponded to 1, 5, and 10 times of indoor air quality standard in China. After 90 consecutive days of exposure (2 h/day), oxidative stress markers in lung, cellular infiltration and cytokines, chemokine, neurotrophin in bronchoalveolar lavage fluid (BALF), and immunoglobulin (Ig) in serum were examined. VOCs exposure could increase significantly reactive oxygen species (ROS) in lung, the levels of interleukin-8 (IL-8), IL-4, eotaxin, nerve growth factor (NGF), and various types of leukocytes in BALF, IgE concentration in serum. In contrast, GSH to GSSG ratio and interferon-gamma were significantly decreased following the VOCs exposure. These results indicate that the VOCs mixture-induced inflammatory response is at least partly caused by release of the ROS and mediators from the activated eosinophils, neutrophils, alveolar macrophages and epithelial cells. (C) 2013 Wiley Periodicals, Inc.