个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:环境学院副院长
其他任职:环境学院教工党支部副书记
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:环境学院
联系方式:Email:Liu_wei@dlut.edu.cn
电子邮箱:liu_wei@dlut.edu.cn
Prenatal and Neonatal Exposure to Perfluorooctane Sulfonic Acid Results in Changes in miRNA Expression Profiles and Synapse Associated Proteins in Developing Rat Brains
点击次数:
论文类型:期刊论文
发表时间:2012-06-19
发表刊物:ENVIRONMENTAL SCIENCE & TECHNOLOGY
收录刊物:SCIE、EI、PubMed、PKU、ISTIC、Scopus
卷号:46
期号:12
页面范围:6822-6829
ISSN号:0013-936X
摘要:We previously identified a number of perfluorooctane sulfonic acid (PFOS)-responsive transcripts in developing rat brains using microarray analysis. However, the underlying mechanisms and functional consequences remain unclear. We hypothesized that microRNAs (miRNAs), which have emerged as powerful negative regulators of mRNA and protein levels, might be responsible for PFOS-induced mRNA changes and consequent neural dysfunctions. We used eight miRNA arrays to profile the expression of brain miRNAs in neonatal rats on postnatal days (PND) 1 and 7 with maternal treatment of 0 (Control) and 3.2 mg/kg of PFOS feed from gestational day 1 to PND 7, and subsequently examined six potentially altered synapse-associated proteins to evaluate presumptive PFOS-responsive functions. Twenty-four brain miRNAs on PND 1 and 17 on PND 7 were significantly altered with PFOS exposure (P < 0.05), with miR-466b, -672, and -297, which are critical in neurodevelopment and synapse transmission, showing a more than 5-fold reduction. Levels of three synapse-involved proteins, NGFR, TrkC, and VGLUT2, were significantly decreased with no protein up-regulated on PND 1 or 7. Perfluorooctane sulfonic acid might affect calcium actions during synapse transmission in the nervous system by interfering with SYNJ1, ITPR1, and CALM1 via their targeting miRNAs. Our results indicated that miRNA had little direct regulatory effect on the expression of mRNAs and synapse-associated proteins tested in the developing rat brain exposed to PFOS, and it seems that the PFOS-induced synaptic dysfunctions and changes in transcripts resulted from a combinatory action of biological controllers and processes, rather than directed by one single factor.