Hits:
Indexed by:期刊论文
Date of Publication:2018-01-01
Journal:CHEMOSPHERE
Included Journals:SCIE、EI、PubMed
Volume:191
Issue:1
Page Number:1021-1027
ISSN No.:0045-6535
Key Words:Photodegradation; Sulfapyridine; Water treatment; Photophysical and photochemical processes
Abstract:For organic pollutants, photodegradation, as a major abiotic elimination process and of great importance to the environmental fate and risk, involves rather complicated physical and chemical processes of excited molecules. Herein, we systematically studied the photophysical and photochemical processes of a widely used antibiotic, namely sulfapyridine. By means of density functional theory (NT) computations, we examined the rate constants and the competition of both photophysical and photochemical processes, elucidated the photochemical reaction mechanism, calculated reaction quantum yield (Phi) based on both photophysical and photochemical processes, and subsequently estimated the photodegradation rate constant. We further conducted photolysis experiments to measure the photodegradation rate constant of sulfapyridine. Our computations showed that sulfapyridine at the lowest excited singlet state (Si) mainly undergoes internal conversion to its ground state, and is difficult to transfer to the lowest excited triplet states (T-1) via intersystem crossing (ISC) and emit fluorescence. In T-1 state, compared with phosphorescence emission and ISC, chemical reaction is much easier to initiate. Encouragingly, the theoretically predicted photodegradation rate constant is close to the experimentally observed value, indicating that quantum chemistry computation is powerful enough to study photodegradation involving ultra-fast photophysical and photochemical processes. (C) 2017 Elsevier Ltd. All rights reserved.