![]() |
个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:女
毕业院校:哈尔滨工业大学
学位:博士
所在单位:材料科学与工程学院
学科:航空宇航制造工程. 航空航天力学与工程. 应用与实验力学. 材料学
办公地点:大连理工大学材料学院知远楼A435
联系方式:0411-84706791
电子邮箱:liuxindlut@dlut.edu.cn
Covalent incorporation of aminated carbon nanotubes into epoxy resin network
点击次数:
论文类型:期刊论文
发表时间:2014-12-01
发表刊物:HIGH PERFORMANCE POLYMERS
收录刊物:SCIE、EI、Scopus
卷号:26
期号:8
页面范围:892-899
ISSN号:0954-0083
关键字:Epoxy resin; aminated CNT; nanocomposite; mechanical properties
摘要:In order to expand applied field of epoxy resin, its mechanical properties have to be improved. Carbon nanotube (CNT) is regarded as an exceptional toughening agent for polymers. However, poor dispersion quality of CNT in polymer matrix and weak interfacial force between them commonly lead to low reinforcing efficiency. This article presented a study on the mechanical properties of epoxy composite reinforced with aminated CNT (CNT-NH2). The amination of CNT was achieved via a wet chemical procedure using 1,6-diaminohexane (DAH) as amine source. Fourier transform infrared spectroscopy, zeta potential test, and thermogravimetric analysis were employed to investigate the as-prepared CNT-NH2. The results show that DAH has been successfully grafted onto the surface of CNT. Scanning electron microscopic images show that CNT-NH2 is homogenously dispersed in epoxy matrix. Mechanical properties tests suggest that the tensile strength and fracture toughness of the obtained CNT-NH2/epoxy composite are all enhanced compared with cured pure epoxy resin. The tensile strength and fracture toughness of the as-prepared CNT-NH2/epoxy composite with 0.8 wt% CNT-NH2 show 42% and 95% improvement, respectively. These results indicate that CNT-NH2 is a promising toughening agent for enhancing the mechanical properties of epoxy resin.