刘颖

个人信息Personal Information

副教授

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:控制科学与工程学院

电子邮箱:liu_ying@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Extended Kalman filter-based Elman networks for industrial time series prediction with GPU acceleration

点击次数:

论文类型:期刊论文

发表时间:2013-10-22

发表刊物:NEUROCOMPUTING

收录刊物:SCIE、EI、Scopus

卷号:118

页面范围:215-224

ISSN号:0925-2312

关键字:Elman network; Time series prediction; EKF; GPU; Industrial data

摘要:Accurately and rapidly predicting a time series is a hot research issue in the current applied sciences field. Compared to gradient-based methods, the existing extended Kalman filter (EKF)-based recurrent neural network (RNN) improved the convergence rate of training, but its computing for the Jacobian matrix was usually complicated and time-consuming. In this study, considering the structural feature of the Elman network and the modeling demand in industrial application, a new direct calculation of the Jacobian matrix for Elman networks is proposed and the corresponding matrix solution is clearly derived, which greatly simplifies the solving process and helps to realize its parallelization. Given the industrial real-time demand, a parallelized method is then reported to model the Elman network, which shifts the computational intensive tasks of network training on graphics processing unit (GPU) for the modeling efficiency. To demonstrate the performance of the proposed method, a number of experimental instances are presented, including the Mackey-Glass time series with additive Gaussian white noise and a real-world industrial application-byproduct gas flow prediction in the steel industry. The results indicate that the proposed method exhibits the merits of rapid modeling, strong generalization and good stability. (C) 2013 Elsevier B.V. All rights reserved.