刘悦

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连工学院

学位:硕士

所在单位:物理学院

学科:等离子体物理

联系方式:liuyue@dlut.edu.cn

电子邮箱:liuyue@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A comparative study of ideal kink stability in two reactor-relevant tokamak plasma configurations with negative and positive triangularity

点击次数:

论文类型:期刊论文

发表时间:2016-11-01

发表刊物:PLASMA PHYSICS AND CONTROLLED FUSION

收录刊物:SCIE、EI、Scopus

卷号:58

期号:11

ISSN号:0741-3335

关键字:magneto-hydrodynamic; ideal kink mode; negative triangularity; kinetic effect; resistive wall mode

摘要:The effects of an ideal/resistive conducting wall, the drift kinetic resonances, as well as the toroidal plasma flow, on the stability of the ideal external kink mode are numerically investigated for a reactor-relevant tokamak plasma with strongly negative triangularity (NTR) shaping. Comparison is made for a similar plasma equilibrium, but with positive triangularity (PTR). It is found that the ideal wall stabilization is less efficient for the kink stabilization in the NTR plasma due to a less 'external' eigenmode structure compared to the PTR plasma. The associated plasma displacement in the NTR plasma does not 'balloon' near the outboard mid-plane, as is normally the case for the pressure-driven kink-ballooning instability in PTR plasmas, but being more pronounced near the X-points. The toroidal flow plays a similar role for the kink stability for both NTR and PTR plasmas. The drift kinetic damping is less efficient for the ideal external kink mode in the NTR plasma, despite a somewhat larger fraction of the particle trapping near the plasma edge compared to the PTR equilibrium. However, the drift kinetic damping of the resistive wall mode (RWM) in the NTR plasma is generally as efficient as that of the PTR plasma, although the RWM window, in terms of the normalized pressure, is narrower for the NTR plasma.