柳振鑫

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:数学科学学院院长、党委副书记

性别:男

毕业院校:吉林大学

学位:博士

所在单位:数学科学学院

学科:应用数学. 应用数学. 概率论与数理统计. 概率论与数理统计

办公地点:数学楼520室

联系方式:0411-84706570,0411-84708351-8520

电子邮箱:zxliu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent and Poisson stable solutions for stochastic differential equations

点击次数:

论文类型:期刊论文

发表时间:2020-08-05

发表刊物:JOURNAL OF DIFFERENTIAL EQUATIONS

收录刊物:SCIE

卷号:269

期号:4

页面范围:3652-3685

ISSN号:0022-0396

关键字:Stochastic differential equation; Quasi-periodic solution; Bohr/Levitan almost periodic solution; Almost automorphic solution; Birkhoff recurrent solution; Poisson stable solution; Asymptotic stability

摘要:The paper is dedicated to studying the problem of Poisson stability (in particular stationarity, periodicity, quasi-periodicity, Bohr almost periodicity, Bohr almost automorphy, Birkhoff recurrence, almost recurrence in the sense of Bebutov, Levitan almost periodicity, pseudo-periodicity, pseudo-recurrence, Poisson stability) of solutions for semi-linear stochastic equation
   dx(t) = (Ax(t) + f(t, x(t)))dt + g(t, x(t))dW(t) (*)
   with exponentially stable linear operator A and Poisson stable in time coefficients f and g. We prove that if the functions f and g are appropriately "small", then equation (*) admits at least one solution which has the same character of recurrence as the functions f and g. We also discuss the asymptotic stability of these Poisson stable solutions. (C) 2020 Elsevier Inc. All rights reserved.