个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:数学科学学院院长、党委副书记
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
学科:应用数学. 应用数学. 概率论与数理统计. 概率论与数理统计
办公地点:数学楼520室
联系方式:0411-84706570,0411-84708351-8520
电子邮箱:zxliu@dlut.edu.cn
Periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent and Poisson stable solutions for stochastic differential equations
点击次数:
论文类型:期刊论文
发表时间:2020-08-05
发表刊物:JOURNAL OF DIFFERENTIAL EQUATIONS
收录刊物:SCIE
卷号:269
期号:4
页面范围:3652-3685
ISSN号:0022-0396
关键字:Stochastic differential equation; Quasi-periodic solution; Bohr/Levitan almost periodic solution; Almost automorphic solution; Birkhoff recurrent solution; Poisson stable solution; Asymptotic stability
摘要:The paper is dedicated to studying the problem of Poisson stability (in particular stationarity, periodicity, quasi-periodicity, Bohr almost periodicity, Bohr almost automorphy, Birkhoff recurrence, almost recurrence in the sense of Bebutov, Levitan almost periodicity, pseudo-periodicity, pseudo-recurrence, Poisson stability) of solutions for semi-linear stochastic equation
dx(t) = (Ax(t) + f(t, x(t)))dt + g(t, x(t))dW(t) (*)
with exponentially stable linear operator A and Poisson stable in time coefficients f and g. We prove that if the functions f and g are appropriately "small", then equation (*) admits at least one solution which has the same character of recurrence as the functions f and g. We also discuss the asymptotic stability of these Poisson stable solutions. (C) 2020 Elsevier Inc. All rights reserved.