李秀魁

个人信息Personal Information

副教授

硕士生导师

性别:男

毕业院校:密西根理工大学

学位:博士

所在单位:信息与通信工程学院

学科:信号与信息处理

办公地点:海山楼B0310

联系方式:86-411-84706002, Ext. 2503

电子邮箱:xli@dlut.edu.cn

扫描关注

论文成果

当前位置: XIUKUI LI >> 科学研究 >> 论文成果

Saliency Detection by Unifying Regression and Propagation

点击次数:

论文类型:会议论文

发表时间:2017-01-01

收录刊物:EI、CPCI-S

卷号:10559

页面范围:390-399

关键字:Saliency detection; Logistic regression; Label propagation; Affinity learning

摘要:This paper introduces a novel saliency detection method by incorporating logistic regression into the label propagation framework, along with a principled weight computation for saliency fusion. First, the initial map is generated by computing objectness and backgroundness. Second, we unify logistic regression and label propagation to predict saliency labels. Last, we fuse the predicted result and initial map and further refine the fused map across multiple scales. Moreover, we use clustering random forest to learn the pairwise affinities between super-pixels for backgroundness computation and saliency prediction. Extensive experiments on three large benchmark datasets demonstrate the proposed algorithm performs well against the state-of-the-art methods.