李廷举

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 辽宁省高校重点实验室主任

性别:男

毕业院校:日本国名古屋大学

学位:博士

所在单位:材料科学与工程学院

学科:材料加工工程

联系方式:0411-84708940

电子邮箱:tjuli@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Effects of Co and Si additions and cryogenic rolling on structure and properties of Cu-Cr alloys

点击次数:

论文类型:期刊论文

发表时间:2019-01-07

发表刊物:MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING

收录刊物:SCIE、Scopus

卷号:740

页面范围:165-173

ISSN号:0921-5093

关键字:Cu-Cr-Co-Si alloys; Cryogenic rolling; Structure; Hardness; Strength; Electrical conductivity

摘要:Cu-Cr alloys have been widely used in industrial applications owing to their good combination of mechanical properties and electrical conductivity. However, the comprehensive performance of the alloy needs to be further improved to meet the harsh working environment. Hence, in this study, a new type of Cu-Cr alloy with Co and Si additions together with cryogenic rolling (CR) was designed and investigated. Microstructure analysis confirms that the Cr15Co9Si6 and Co2Si phases are formed with Co and Si additions into the Cu-Cr alloy. For the more, partial Cr15Co9Si6 phase decomposes during heat treatment process, and the Co2Si and Cr precipitates are precipitated from matrix during aging process. The improvement of tensile properties of the Cu-1Cr-1Co-0.6Si alloy is mainly attributed to the precipitation strengthening and grain boundary strengthening, and is also benefited from dislocation density strengthening, twin boundary strengthening, and solid solution strengthening. The electrical conductivity of the Cu-1Cr-1Co-0.6Si alloy decreases dramatically mainly due to the increase of impurity scattering caused by surplus Si atoms. CR deformation is helpful for more solute atoms precipitated from the supersaturated solid solution during aging process, and thus the electrical conductivity of the Cu-1Cr-1Co-0.6Si alloy increases with increasing deformation amount. After homogenizing treatment at 900 degrees C for 2 h, hot rolling by 60% at 900 degrees C, solution treating at 990 degrees C for 4 h, cold rolling by 90%, and aging at 440 degrees C for 1 h, the hardness, yield strength (YS), ultimate tensile strength (UTS), and electrical conductivity of the Cu-1Cr-1Co-0.6Si alloy are 214.6 HV, 663.7 MPa, 745.9 MPa and 41.6%IACS, respectively, which exhibit good mechanical properties with a proper electrical conductivity. These results provide a feasible route for developing high performance Cu-Cr alloys.