个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 辽宁省高校重点实验室主任
性别:男
毕业院校:日本国名古屋大学
学位:博士
所在单位:材料科学与工程学院
学科:材料加工工程
联系方式:0411-84708940
电子邮箱:tjuli@dlut.edu.cn
Suppression of discontinuous precipitation in age-hardening Cu-15Ni-8Sn alloy by addition of V
点击次数:
论文类型:期刊论文
发表时间:2020-01-15
发表刊物:Journal of Alloys and Compounds
收录刊物:EI
卷号:813
ISSN号:09258388
摘要:In the present study, the morphology and growth kinetics of discontinuous precipitation (DP) in Cu-15Ni-8Sn-xV alloys were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results indicate that the DP colony presents a lamellar structure consisting of alternating lamellae of -Cu matrix and -DO3 phase ((CuxNi1-x)3Sn). In addition, the growth kinetics of DP in Cu-15Ni-8Sn alloy was evaluated using the Johnson CMehl CAvrami CKolmogorov (JMAK) equation and the time exponent can be ascertained between n = 2 and n = 1. It also demonstrates that the initiation of DP in Cu-15Ni-8Sn alloy occurs at grain edges and boundaries. Moreover, the activation energy (Q) of DP is determined to be about 75 kJ/mol by using the Arrhenius equation, thus DP reaction is believed to be controlled by grain boundary diffusion. Interestingly, the addition of V has an obvious effect on the suppression of DP in Cu-15Ni-8Sn alloy. It can be determined that the activation energy (Q) of DP in Cu-15Ni-8Sn-0.2V alloy is about 350 kJ/mol, which is much larger than that of in Cu-15Ni-8Sn alloy. The increasing activation energy of DP after adding V can certainly suppress the formation of DP greatly. Additionally, it is found that a larger number of Ni3V particles generate accompanied by addition of V in Cu-15Ni-8Sn-0.4V alloy. Therefore, the considerable precipitated Ni3V particles impose a strong pinning effect on grain boundary, which also should be responsible for the resultant suppressing effect. Besides, the interlamellar spacing of DP increases and the growth rate of lamellae decreases with increasing V content when aging at 673 K. ? 2019 Elsevier B.V.