霍林生

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:土木工程系

学科:结构工程

办公地点:综合实验4号楼501

联系方式:0411-84706304

电子邮箱:lshuo@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Finite Element Analysis of Grouting Compactness Monitoring in a Post-Tensioning Tendon Duct Using Piezoceramic Transducers

点击次数:

论文类型:期刊论文

发表时间:2017-10-01

发表刊物:SENSORS

收录刊物:Scopus、SCIE、EI、PubMed

卷号:17

期号:10

ISSN号:1424-8220

关键字:Lead Zirconate Titanate (PZT); smart aggregate (SA); post-tensioning tendon duct (PTTD); grouting compactness; grouting compactness monitoring; finite element model (FEM)

摘要:With the development of the post-tensioning technique, prestressed concrete structures have been widely used in civil engineering. To ensure the long-term effectiveness of the prestressed tendon, the grouting quality of the tendon duct is one of the important factors. However, it is still a challenge to monitor the grouting quality of post-tensioning tendon ducts, due to the invisibility of the grouting. The authors' previous work proposed a real-time method that employed a stress wave-based active sensing approach with piezoceramic transducers to monitor the grouting compactness of a Post-Tensioning Tendon Duct (PTTD). To further understand the piezoceramic induced stress wave propagation in the PTTD with different grouting levels, this paper develops a two-dimensional finite element model for monitoring the grouting compactness of the tendon duct with a piezoceramic transducer. A smart aggregate (SA) developed to utilize one Lead Zirconate Titanate (PZT) transducer with marble protection is installed in the center location of the tendon duct as an actuator. Two PZT patches are bonded on the bottom and top surface of the tendon duct as the sensors. The analysis results show that the finite element analysis results are in good agreement with the experimental results, which demonstrates that the finite element analysis is feasible and reliable. For the top half of the specimen, not much stress wave could be detected before the full grouting level, except for negligible signals that may propagate through the walls of the tendon duct. When the tendon duct grouting is at 100%, the stress wave propagates to the top of the specimen, and the displacements are symmetric in both left-right and top-bottom directions before the stress waves reach the boundary. The proposed two-dimensional finite element model has the potential to be implemented to simulate the stress wave propagation principle for monitoring grouting compaction of the post-tensioning tendon duct.