霍林生

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:土木工程系

学科:结构工程

办公地点:综合实验4号楼501

联系方式:0411-84706304

电子邮箱:lshuo@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Tension Monitoring of Wedge Connection Using Piezoceramic Transducers and Wavelet Packet Analysis Method

点击次数:

论文类型:期刊论文

发表时间:2020-01-01

发表刊物:SENSORS

收录刊物:PubMed、EI、SCIE

卷号:20

期号:2

关键字:piezoceramics; prestress monitoring; steel strand; wedge anchorage connection; wavelet packet analysis

摘要:A steel strand is widely used in long span prestressed concrete bridges. The safety and stability of a steel strand are important issues during its operation period. A steel strand is usually subjected to various types of prestress loss which loosens the anchorage system, negatively impacting the stability of the structure and even leading to severe accidents. In this paper, the authors propose a wavelet packet analysis method to monitor the looseness of the wedge anchorage system by using stress wave-based active sensing. As a commonly used piezoceramic material, lead zirconate titanate (PZT) is employed with a strong piezoelectric effect. In the proposed active sensing approach, PZT patches are used as sensors and actuators to monitor the steel strand looseness. The anchorage system consists of the steel strand, wedges and barrel, which forms two different direct contact surfaces to monitor the tension force. PZT patches are pasted on the surface of each steel strand, corresponding wedge and barrel, respectively. Different combinations of PZTs are formed to monitor the anchoring state of the steel strand according to the position of the PZT patches. In this monitoring method of two contact surfaces, one PZT patch is used as an actuator to generate a stress wave and the other corresponding PZT patch is used as a sensor to detect the propagated waves through the wedge anchorage system. The function of these two PZTs were exchanged with the changing of transmission direction. The wavelet packet analysis method is utilized to analyze the transmitted signal between PZT patches through the steel strand anchorage system. Compared with the wavelet packet energy of received signals under different PZT combinations, it could be found that the wavelet packet energy increased with the increasing of anchorage system tightness. Therefore, the wavelet packet energy of received signal could be used to monitor the tightness of the steel strand during operation. Additionally, the wavelet packet energy of the received signals are different when the same PZT combination exchanges the energy transfer direction. With the comparison on the received signals of different combinations of PZTs, the optimal energy transfer path corresponding to different contact surfaces of the steel strand could be determined and the optimal experimental results are achieved.