![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 智能计算教研室主任
性别:男
毕业院校:吉林大学
学位:博士
所在单位:计算机科学与技术学院
学科:计算机应用技术. 计算机软件与理论
办公地点:创新园大厦A820
联系方式:13304609362
电子邮箱:lucos@dlut.edu.cn
论文成果
当前位置: 姚念民欢迎报考硕博士 >> 科学研究 >> 论文成果Polyseme-Aware Vector Representation for Text Classification
点击次数:
论文类型:期刊论文
发表时间:2020-01-01
发表刊物:IEEE ACCESS
收录刊物:SCIE
卷号:8
页面范围:135686-135699
ISSN号:2169-3536
关键字:Task analysis; Semantics; Text categorization; Training; Computational modeling; Context modeling; Microsoft Windows; Polysemous words; context clustering algorithm; PAVRM-Context; PAVRM-Center
摘要:Representation models for text classification have recently shown impressive performance. However, these models neglect the importance of polysemous words in text. When polysemous words appear in a text, imprecise polysemous word embeddings will produce low-quality text representation that results in changing the original meaning of the text. To address this problem, in this paper, we present a more effective model architecture, the polyseme-aware vector representation model (PAVRM), to generate more precise vector representations for words and texts. The PAVRM can effectively identify polysemous words in a corpus with a context clustering algorithm. Additionally, we propose two methods to construct polysemous word representations, PAVRM-Context and PAVRM-Center. Experiments conducted on three standard text classification tasks and a custom text classification task demonstrate that the proposed PAVRM can be effectively introduced into existing models to generate higher-quality word and text representations to achieve better classification performance.