扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 张立卫 ( 教授 )

    的个人主页 http://faculty.dlut.edu.cn/1992011039/en/index.htm

  •   教授   博士生导师   硕士生导师
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
Calibrating low-rank correlation matrix problem: an SCA-based approach

点击次数:
论文类型:期刊论文
发表时间:2014-05-04
发表刊物:OPTIMIZATION METHODS & SOFTWARE
收录刊物:EI、SCIE、Scopus
卷号:29
期号:3
页面范围:561-582
ISSN号:1055-6788
关键字:DC programming; correlation matrix; low rank; semi-definite programming; H-weighted; SCA
摘要:Rank-constrained nearest correlation matrix problems, weighted or not, are reformulated into difference of convex (DC) functions constrained optimization problems. A general sequential convex approximation (SCA) approach for a DC-constrained optimization problem is developed. To overcome difficulties encountered in solving the convex approximation subproblems in the SCA approach, an SCA-based nonsmooth equation approach is proposed to solve the specific rank-constrained problem. In this approach, we use a simple iteration scheme for updating the multiplier variable corresponding to the rank constraint, and an inexact smoothing Newton method for calculating the primal variable and the multiplier variable corresponding to the linear constraint. Numerical experiments are reported and they illustrate the efficiency of our approach.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学