扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 张立卫 ( 教授 ) 622

    的个人主页 http://faculty.dlut.edu.cn/1992011039/en/index.htm

  •   教授   博士生导师   硕士生导师
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo

点击次数:
论文类型:期刊论文
发表时间:2014-03-01
发表刊物:INFORMS JOURNAL ON COMPUTING
收录刊物:SCIE、EI、Scopus
卷号:26
期号:2
页面范围:385-400
ISSN号:1091-9856
关键字:value-at-risk; conditional value-at-risk; Monte Carlo; CVaR-like approximation
摘要:We study optimization problems with value-at-risk (VaR) constraints. Because it lacks subadditivity, VaR is not a coherent risk measure and does not necessarily preserve the convexity. Thus, the problems we consider are typically not provably convex. As such, the conditional value-at-risk (CVaR) approximation is often used to handle such problems. Even though the CVaR approximation is known as the best convex conservative approximation, it sometimes leads to solutions with poor performance. In this paper, we investigate the CVaR approximation from a different perspective and demonstrate what is lost in this approximation. We then show that the lost part of this approximation can be remedied using a sequential convex approximation approach, in which each iteration only requires solving a CVaR-like approximation via certain Monte Carlo techniques. We show that the solution found by this approach generally makes the VaR constraints binding and is guaranteed to be better than the solution found by the CVaR approximation and moreover is empirically often globally optimal for the target problem. The numerical experiments show the effectiveness of our approach.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学