扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 张立卫 ( 教授 )

    的个人主页 http://faculty.dlut.edu.cn/1992011039/en/index.htm

  •   教授   博士生导师   硕士生导师
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
Quadratic model updating with gyroscopic structure from partial eigendata

点击次数:
论文类型:期刊论文
发表时间:2013-09-01
发表刊物:OPTIMIZATION AND ENGINEERING
收录刊物:SCIE、EI、Scopus
卷号:14
期号:3
页面范围:431-455
ISSN号:1389-4420
关键字:Quadratic eigenvalue problem; Inverse problem; Model updating problem; Gyroscopic structure; Inexact smoothing Newton method
摘要:Quadratic eigenvalue model updating problem, which aims to match observed spectral information with some feasibility constraints, arises in many engineering areas. In this paper, we consider a damped gyroscopic model updating problem (GMUP) of constructing five n-by-n real matrices M,C,K,G and N, such that they are closest to the given matrices and the quadratic pencil Q(lambda):=lambda (2) M+lambda(C+G)+K+N possess the measured partial eigendata. In practice, M,C and K, represent the mass, damping and stiffness matrices, are symmetric (with M and K positive definite), G and N, represent the gyroscopic and circulatory matrices, are skew-symmetric. Under mild assumptions, we show that the Lagrangian dual problem of GMUP can be solved by a quadratically convergent inexact smoothing Newton method. Numerical examples are given to show the high efficiency of our method.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学