的个人主页 http://faculty.dlut.edu.cn/1992011039/en/index.htm
点击次数:
论文类型:期刊论文
发表时间:2012-03-01
发表刊物:SET-VALUED AND VARIATIONAL ANALYSIS
收录刊物:SCIE
卷号:20
期号:1
页面范围:75-109
ISSN号:1877-0533
关键字:Coderivative; Sample average approximation; Parametric stochastic
variational inequality; Lipschitz-like property; Stochastic bilevel
program
摘要:The aim of this paper is to investigate the convergence properties for Mordukhovich's coderivative of the solution map of the sample average approximation (SAA) problem for a parametric stochastic variational inequality with equality and inequality constraints. The notion of integrated deviation is introduced to characterize the outer limit of a sequence of sets. It is demonstrated that, under suitable conditions, both the cosmic deviation and the integrated deviation between the coderivative of the solution mapping to SAA problem and that of the solution mapping to the parametric stochastic variational inequality converge almost surely to zero as the sample size tends to infinity. Moreover, the exponential convergence rate of coderivatives of the solution maps to the SAA parametric stochastic variational inequality is established. The results are used to develop sufficient conditions for the consistency of the Lipschitz-like property of the solution map of SAA problem and the consistency of stationary points of the SAA estimator for a stochastic bilevel program.