扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 张立卫 ( 教授 )

    的个人主页 http://faculty.dlut.edu.cn/1992011039/en/index.htm

  •   教授   博士生导师   硕士生导师
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
Nonsingularity in second-order cone programming via the smoothing metric projector

点击次数:
论文类型:期刊论文
发表时间:2010-04-01
发表刊物:SCIENCE CHINA-MATHEMATICS
收录刊物:SCIE
卷号:53
期号:4
页面范围:1025-1038
ISSN号:1674-7283
关键字:second-order cone programming problem; smoothing metric projector; B-subdifferential; Clarke's generalized Jacobian; smoothing Newton method
摘要:Based on the differential properties of the smoothing metric projector onto the second-order cone, we prove that, for a locally optimal solution to a nonlinear second-order cone programming problem, the nonsingularity of the Clarke's generalized Jacobian of the smoothing Karush-Kuhn-Tucker system, constructed by the smoothing metric projector, is equivalent to the strong second-order sufficient condition and constraint nondegeneracy, which is in turn equivalent to the strong regularity of the Karush-Kuhn-Tucker point. Moreover, this nonsingularity property guarantees the quadratic convergence of the corresponding smoothing Newton method for solving a Karush-Kuhn-Tucker point. Interestingly, the analysis does not need the strict complementarity condition.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学