扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 张立卫 ( 教授 )

    的个人主页 http://faculty.dlut.edu.cn/1992011039/en/index.htm

  •   教授   博士生导师   硕士生导师
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
An algorithm based on resolvant operators for solving positively semidefinite variational inequalities

点击次数:
论文类型:期刊论文
发表时间:2007-01-01
发表刊物:FIXED POINT THEORY AND APPLICATIONS
收录刊物:SCIE
ISSN号:1687-1820
摘要:A new monotonicity, M-monotonicity, is introduced, and the resolvant operator of an M-monotone operator is proved to be single-valued and Lipschitz continuous. With the help of the resolvant operator, the positively semidefinite general variational inequality (VI) problem VI (S(+)(n), F + G) is transformed into a fixed point problem of a nonexpansive mapping. And a proximal point algorithm is constructed to solve the fixed point problem, which is proved to have a global convergence under the condition that F in the VI problem is strongly monotone and Lipschitz continuous. Furthermore, a convergent path Newton method is given for calculating epsilon-solutions to the sequence of fixed point problems, enabling the proximal point algorithm to be implementable. Copyright (c) 2007.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学