![]() |
个人信息Personal Information
副教授
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:信息与通信工程学院
学科:信号与信息处理
办公地点:海山楼B513
电子邮箱:maxr@dlut.edu.cn
CSI-Based Device-Free Wireless Localization and Activity Recognition Using Radio Image Features
点击次数:
论文类型:期刊论文
发表时间:2017-11-01
发表刊物:IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
收录刊物:SCIE、EI、Scopus
卷号:66
期号:11
页面范围:10346-10356
ISSN号:0018-9545
关键字:Activity recognition; device-free; feature extraction; localization; radio image
摘要:Device-free wireless localization and activity recognition is an emerging technique, which could estimate the location and activity of a person without equipping him/her with any device. It deduces the state of a person by analyzing his/her influence on surrounding wireless signals. Therefore, how to characterize the influence of human behaviors is the key question. In this paper, we explore and exploit a radio image processing approach to better characterize the influence of human behaviors on Wi-Fi signals. Traditional methods deal with channel state information (CSI) measurements on each channel independently. However, CSI measurements on different channels are correlated, and thus lots of useful information involved with channel correlation may be lost. This motivates us to look on CSI measurements from multiple channels as a radio image and deal with it from the two-dimensional perspective. Specifically, we transform CSI measurements from multiple channels into a radio image, extract color and texture features from the radio image, adopt a deep learning network to learn optimized deep features from image features, and estimate the location and activity of a person using a machine learning approach. Benefits from the informative and discriminative deep image features and experimental results in two clutter laboratories confirm the excellent performance of the proposed system.