马晓瑞

个人信息Personal Information

副教授

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:信息与通信工程学院

学科:信号与信息处理

办公地点:海山楼B513

电子邮箱:maxr@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Hyperspectral image classification via contextual deep learning

点击次数:

论文类型:期刊论文

发表时间:2015-07-14

发表刊物:EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING

收录刊物:SCIE、EI、Scopus

卷号:2015

期号:1

ISSN号:1687-5281

关键字:Hyperspectral image classification; Contextual deep learning; Multinomial logistic regression (MLR); Supervised classification

摘要:Because the reliability of feature for every pixel determines the accuracy of classification, it is important to design a specialized feature mining algorithm for hyperspectral image classification. We propose a feature learning algorithm, contextual deep learning, which is extremely effective for hyperspectral image classification. On the one hand, the learning-based feature extraction algorithm can characterize information better than the pre-defined feature extraction algorithm. On the other hand, spatial contextual information is effective for hyperspectral image classification. Contextual deep learning explicitly learns spectral and spatial features via a deep learning architecture and promotes the feature extractor using a supervised fine-tune strategy. Extensive experiments show that the proposed contextual deep learning algorithm is an excellent feature learning algorithm and can achieve good performance with only a simple classifier.