孟长功

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:中科院金属所

学位:博士

所在单位:化工学院

学科:无机化学

办公地点:大连理工大学化学楼401

联系方式:13940825088

电子邮箱:cgmeng@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

TiOx Film formation on NiTi alloy (100) Surface: Density Functional Theory Investigation

点击次数:

论文类型:会议论文

发表时间:2010-06-26

收录刊物:EI、CPCI-S、SCIE、Scopus

卷号:675-677

页面范围:353-356

关键字:NiTi shape memory alloy; surface oxidation; biocompatibility

摘要:NiTi shape memory alloy is widely used as biomaterial for its superior mechanical properties and good biocompatibility. Effective protocols based on the surface oxidation mechanisms, which would precisely control the formation of surface oxide, should be designed and implemented to improve the biocompatibility of NiTi alloy based biomaterials. To shed light on the TiOx species formation mechanism on NiTi surface, density functional theory (OFT) based calculations were carried out to study the adsorption and reactions of O-2 on the NiTi alloy (100) surface. O-2 is found activated and will decompose upon adsorption. At higher O-2 coverage, the reconstructed bridge configuration will generate (110) surface of TiO2, and the hollow configuration will evolve to (100) surface of TiO. The formation of TiO2 phase is thermodynamically favored, but only feasible when the temperature is enough high. At lower temperature, the atomic diffusion is slowed down, and the surface reconstruction will be limited. This explains why TiO2 will be dominant TiOx at higher temperature, and TiO will exist at lower temperature. Our current work provides more insights on the initial oxidation of NiTi surface, and these findings would be beneficial to improve NiTi alloy based biomaterials, and might guide the design of new functional materials.