个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:中科院金属所
学位:博士
所在单位:化工学院
学科:无机化学
办公地点:大连理工大学化学楼401
联系方式:13940825088
电子邮箱:cgmeng@dlut.edu.cn
Amorphous manganese silicate anchored on multiwalled carbon nanotubes with enhanced electrochemical properties for high performance supercapacitors
点击次数:
论文类型:期刊论文
发表时间:2018-07-05
发表刊物:COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS
收录刊物:SCIE、EI
卷号:548
页面范围:158-171
ISSN号:0927-7757
关键字:Amorphous manganese silicate; MWCNTs; Composites; Electrochemical properties; Supercapacitor; Device
摘要:Amorphous manganese silicate/multi-walled carbon nanotubes (AMSi/MWCNTs) composites were successfully synthesized using MWCNTs, manganese dichloride and sodium silicate as the starting materials by a facile precipitation method. The composition and morphology were characterized by X-ray powder diffraction, energy-dispersive X-ray spectrometer, elemental mapping, Raman, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and transmission electron microscopy. Electrochemical properties of AMSi/MWCNTs as supercapacitor electrode were studied. It was found that the electrochemical performance of AMSi could be adjusted by the amount of MWCNTs. Specific capacitance of AMSi/MWCNTs reached the highest value (236 F g(-1) at 0.5 A g(-1)) in the presence of 40 wt.% of MWCNTs. Asymmetric supercapacitor device assembled from AMSi/MWCNTs and activated carbon (AMSi/MWCNTs//AC) showed its specific capacitances reached 146, 139, 119, 108 and 99 F g(-1) at current densities of 0.5, 1, 2, 5 and 10 A g(-1), respectively. A capacitance retention of 81% for AMSi/MWCNTs//AC device after 1000 cycles indicated that AMSi/MWCNTs had good cycling performance applied to SC device. Present findings demonstrated that MWCNTs could improve the electrochemical properties of AMSi and suggested that AMSi/MWCNTs composites could be considered as potential materials for high-performance energy storage device.