个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:中科院金属所
学位:博士
所在单位:化工学院
学科:无机化学
办公地点:大连理工大学化学楼401
联系方式:13940825088
电子邮箱:cgmeng@dlut.edu.cn
Hydrothermal synthesis and electrochemical properties of hierarchical vanadyl hydroxide spheres with hollow core and mesoporous shell
点击次数:
论文类型:期刊论文
发表时间:2017-09-01
发表刊物:MICROPOROUS AND MESOPOROUS MATERIALS
收录刊物:SCIE、EI、Scopus
卷号:249
页面范围:137-145
ISSN号:1387-1811
关键字:Hierarchical VOOH hollow spheres; Hydrothermal synthesis; Porous; Electrochemical properties; Supercapacitor electrode
摘要:Hierarchical porous vanadyl hydroxide (VOOH) hollow spheres were successfully prepared using ammonium metavanadate as starting vanadium source materials through a facile hydrothermal method. Their morphology, structure and composition were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, energy-dispersive X-ray spectrometry, elemental mapping, elemental analysis, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and nitrogen adsorption-desorption isotherms. Brunauer-Emmett-Teller specific surface area of hierarchical VOOH hollow spheres measured 32 m(2) g(-1), and their most probable distribution pore size reached 3.6 nm. Results demonstrated that hierarchical VOOH hollow spheres possessed macropores in their hollow interior and mesopores in shell. Electrochemical properties of hierarchical VOOH hollow spheres as supercapacitor (SC) electrodes were explored and investigated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. Results showed that hierarchical VOOH hollow spheres featured capacitive behavior based on pseudocapacitance, and exhibited specific capacitance of 93 F g(-1) at current density of 0.2 A g(-1). Cycling stability was discussed in detail and indicated good rate capability of studied materials. VOOH hollow spheres are ideal material for SC electrodes in the present study. (C) 2017 Elsevier Inc. All rights reserved.