Indexed by:期刊论文
Date of Publication:2017-09-15
Journal:OPTICS LETTERS
Included Journals:Scopus、SCIE、EI
Volume:42
Issue:18
Page Number:3562-3565
ISSN No.:0146-9592
Abstract:A polarization Scheimpflug lidar system based on the Scheimpflug principle has been developed by employing two linearly polarized 808 nm laser diodes and a complementary metal-oxide-semiconductor (CMOS) image sensor. The polarization of one laser diode is rotated 90 degrees by a half-wave plate. The two laser beams with orthogonal polarizations are combined by a polarization beam splitter and transmitted into the atmosphere. The corresponding parallel- and perpendicular-polarized backscattering echoes are detected by the 45 degrees tilted CMOS sensor using a time-division multiplexing scheme. A 24 h continuous atmospheric vertical profiling of the depolarization ratio has been performed by using the polarization Scheimpflug lidar system. The promising results successfully demonstrated that the present lidar system has potential for the polarization studies of atmospheric aerosols. (C) 2017 Optical Society of America
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:Dalian University of Technology
Degree:Doctoral Degree
School/Department:School of Physics
Discipline:Optical Engineering. Measuring Technology and Instrument
Business Address:厚望楼404
Contact Information:13942859962
Open time:..
The Last Update Time:..