Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
孟相宇

Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:化工学院
Discipline:Safety Science and Engineering. Chemical Process Equipment
E-Mail:mengxiangyu@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

EFFECTS OF N-BUTANOL CONTENT ON THE DUAL-FUEL COMBUSTION MODE WITH CNG AT TWO ENGINE SPEEDS

Hits : Praise

Indexed by:会议论文

Date of Publication:2019-01-01

Included Journals:CPCI-S

Abstract:Because of the potential to reduce NO. and PM emissions simultaneously and the utilization of biofuel, diesel/compressed natural gas (CNG) dual-fuel combustion mode with port injection of CNG and direct injection of diesel has been widely studied. While in comparison with conventional diesel combustion mode, the dual-fuel combustion mode generally leads lower thermal efficiency, especially at low and medium load, and higher carbon monoxide (CO) and total hydrocarbons (THC) emissions. In this work, n-butanol was blended with diesel as the pilot fuel to explore the possibility to improve the performance and emissions of dual-fuel combustion mode with CNG. Various pilot fuels of B0 (pure diesel), B10 (90% diesel/10% n-butanol by volume basis), B20 (80% diesel/20% nbutanol) and B30 (70% diesel/30% n-butanol) were compared at the CNG substitution rate of 70% by energy basis under the engine speeds of 1400 and 1800 rpm. The experiments were carried out by sweeping a wide range of pilot fuel start of injection timings based on the same total input energy including pilot fuel and CNG. As n-butanol was added into the pilot fuel, the pilot fuel/CNG/air mixture tends to be more homogeneous. The results showed that for the engine speed of 1400 rpm, pilot fuel with n-butanol addition leads to a slightly lower indicated thermal efficiency (ITE). B30 reveals much lower NOx emission and slightly higher THC emissions. For the engine speed of 1800 rpm, B20 can improve ITE and decrease the NOx and THC emissions simultaneously relative to B0.