个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 固体力学. 计算力学
办公地点:大连理工大学主校区工程力学系楼509室
联系方式:Tel:+86-15140368939
电子邮箱:mingli@dlut.edu.cn
论文成果
当前位置: 大连理工大学工程... >> 科学研究 >> 论文成果Topology optimization considering fracture mechanics behaviors at specified locations
点击次数:
论文类型:期刊论文
发表时间:2017-05-01
发表刊物:STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
收录刊物:SCIE、EI、Scopus
卷号:55
期号:5
页面范围:1847-1864
ISSN号:1615-147X
关键字:Topology optimization; Fracture mechanics; J integral; Crack; Detachable structures; Adjoint sensitivity analysis
摘要:As a typical form of material imperfection, cracks generally cannot be avoided and are critical for load bearing capability and integrity of engineering structures. This paper presents a topology optimization method for generating structural layouts that are insensitive/sensitive as required to initial cracks at specified locations. Based on the linear elastic fracture mechanics model (LEFM), the stress intensity of initial cracks in the structure is analyzed by using singularity finite elements positioned at the crack tip to describe the near-tip stress field. In the topology optimization formulation, the J integral, as a criterion for predicting crack opening under certain loading and boundary conditions, is introduced into the objective function to be minimized or maximized. In this context, the adjoint variable sensitivity analysis scheme is derived, which enables the optimization problem to be solved with a gradient-based algorithm. Numerical examples are given to demonstrate effectiveness of the proposed method on generating structures with desired overall stiffness and fracture strength property. This method provides an applicable framework incorporating linear fracture mechanics criteria into topology optimization for conceptual design of crack insensitive or easily detachable structures for particular applications.