个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 固体力学. 计算力学
办公地点:大连理工大学主校区工程力学系楼509室
联系方式:Tel:+86-15140368939
电子邮箱:mingli@dlut.edu.cn
论文成果
当前位置: 大连理工大学工程... >> 科学研究 >> 论文成果Design of two-dimensional horseshoe layout for stretchable electronic systems
点击次数:
论文类型:期刊论文
发表时间:2013-12-01
发表刊物:JOURNAL OF MATERIALS SCIENCE
收录刊物:SCIE、EI、Scopus
卷号:48
期号:24
页面范围:8443-8448
ISSN号:0022-2461
摘要:Using appropriate layout in the design of the stretchable electronics is very important, since the optimized layout is capable of making the electronic system stretchable and maintaining the electrical performance and structural reliability. In this paper, a unit cell model with periodic boundary condition is proposed to investigate the stretchability and optimize the structure of the stretchable electronic systems with the 2D "horseshoe" layout. Unlike the monotonous trends in the cases of the "wavy", "mesh", and 1D "horseshoe" layout, each impact factor (metal wire thickness, metal wire width, eccentric angle) has an optimized value for the stretchability to reach its maximum. To comprehensively investigate the influence of these impact factors on the stretchability, we employ the response surface method and obtain the quadratic response surface function to mathematically explore the relationship between these impact factors and the stretchability of interest. The response surface method proposes an optimal design of the 2D "horseshoe" layout for the maximum stretchability, which agrees well with the finite element simulations results. The findings here provide a more programmable scheme and can be useful in formulating designs for the stretchable electronic systems.