个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 固体力学. 计算力学
办公地点:大连理工大学主校区工程力学系楼509室
联系方式:Tel:+86-15140368939
电子邮箱:mingli@dlut.edu.cn
论文成果
当前位置: 大连理工大学工程... >> 科学研究 >> 论文成果Molecular dynamics study on buckling of single-wall carbon nanotube-based intramolecular junctions and influence factors
点击次数:
论文类型:期刊论文
发表时间:2013-02-01
发表刊物:COMPUTATIONAL MATERIALS SCIENCE
收录刊物:SCIE、EI
卷号:67
页面范围:390-396
ISSN号:0927-0256
关键字:Carbon-nanotube intramolecular junction; Buckling; Strain rate; Temperature; Length
摘要:Carbon nanotube-based intramolecular junctions can function as rectifying diodes and switches in circuits and thus possesses the promising potential to be applied in nano-scale electronic devices. Due to their slender and unsymmetrical geometry, intramolecular junctions are prone to buckling under compression and the resulting structural instability will eventually leads to structural or electrical failure. Thus, it is important to explore the mechanical behaviors of intramolecular junctions subject to compressive loads. In this study, molecular dynamical simulations are carried out to investigate the compressive behaviors of intramolecular junctions at finite temperature, while carbon nanotubes are also studied as reference. The simulation results indicate that the strain rate effect is negligible within relatively low loading-rate range but the critical strain increases significantly under higher loading rate. At an extremely high strain rate, the intramolecular junctions will crush immediately. It is also predicted that local deformation will be introduced at high environmental temperature. Moreover, with increasing tube length, the instability mode of the intramolecular junctions transfers from shell buckling to column buckling and the critical aspect ratio is lower than that of carbon nanotubes due to presence of the Stone-Wales defects. (c) 2012 Elsevier B.V. All rights reserved.