![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 固体力学. 计算力学
办公地点:大连理工大学主校区工程力学系楼509室
联系方式:Tel:+86-15140368939
电子邮箱:mingli@dlut.edu.cn
论文成果
当前位置: 大连理工大学工程... >> 科学研究 >> 论文成果Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability
点击次数:
论文类型:期刊论文
发表时间:2011-02-01
发表刊物:PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
收录刊物:SCIE
卷号:108
期号:5
页面范围:1788-1793
ISSN号:0027-8424
关键字:biomimetic; electronic eyeball camera; flexible electronics; fluidic tunable lens; hydraulic actuation
摘要:Imaging systems that exploit arrays of photodetectors in curvilinear layouts are attractive due to their ability to match the strongly nonplanar image surfaces (i.e., Petzval surfaces) that form with simple lenses, thereby creating new design options. Recent work has yielded significant progress in the realization of such "eyeball" cameras, including examples of fully functional silicon devices capable of collecting realistic images. Although these systems provide advantages compared to those with conventional, planar designs, their fixed detector curvature renders them incompatible with changes in the Petzval surface that accompany variable zoom achieved with simple lenses. This paper describes a class of digital imaging device that overcomes this limitation, through the use of photodetector arrays on thin elastomeric membranes, capable of reversible deformation into hemispherical shapes with radii of curvature that can be adjusted dynamically, via hydraulics. Combining this type of detector with a similarly tunable, fluidic plano-convex lens yields a hemispherical camera with variable zoom and excellent imaging characteristics. Systematic experimental and theoretical studies of the mechanics and optics reveal all underlying principles of operation. This type of technology could be useful for night-vision surveillance, endoscopic imaging, and other areas that require compact cameras with simple zoom optics and wide-angle fields of view.