闵小华

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:埼玉大学

学位:博士

所在单位:材料科学与工程学院

学科:材料学. 材料加工工程

办公地点:材料馆304室

联系方式:辽宁省大连市甘井子区凌工路2号 大连理工大学 材料科学与工程学院 116024 办公电话0411-84708189 手机13149898722

电子邮箱:minxiaohua@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Effect of oxygen content on deformation mode and corrosion behavior in beta-type Ti-Mo alloy

点击次数:

论文类型:期刊论文

发表时间:2017-01-27

发表刊物:MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING

收录刊物:SCIE、EI

卷号:684

页面范围:534-541

ISSN号:0921-5093

关键字:Titanium alloys; Deformation mode; Interstitial oxygen; Mechanical properties; Biocompatibility

摘要:This study examined microstructural characteristics and mechanical properties in a (beta-type Ti-15Mo alloy (mass %) with different oxygen contents, and their corrosion behavior in simulated physiological media. With increasing oxygen content from 0.1-0.5%, lattice parameter of parent beta-phase increased from X-ray diffraction profiles, and spots of athermal co-phase became weak and diffuse through transmission electron microscopy observations. {332} < 113 > twin density decreased with an increase in oxygen content from 0.1-0.3% based on electron backscattered diffraction analyses, and it became almost zero when further increased oxygen content up to 0.5%. The solute oxygen atoms led to both a transition of {332} < 113 > twinning to dislocation slip and a suppression of beta-phase to co-phase transformation. Room-temperature tensile testing of this alloy with oxygen content ranging from 0.1-0.5%, revealed that yield strength ranged from 420 MPa to 1180 MPa and that uniform elongation ranged from 47-0.2%. The oxygen-added alloys kept a low elastic modulus obtained from stress-strain curves, and exhibited good corrosion resistance in Ringer's solution from open-circuit potential and potentiodynamic polarization measurements. A desirable balance between mechanical properties and corrosion resistance is obtainable in this alloy as biomaterials. through utilizing oxygen to control the deformation mode.