个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:埼玉大学
学位:博士
所在单位:材料科学与工程学院
学科:材料学. 材料加工工程
办公地点:材料馆304室
联系方式:辽宁省大连市甘井子区凌工路2号 大连理工大学 材料科学与工程学院 116024 办公电话0411-84708189 手机13149898722
电子邮箱:minxiaohua@dlut.edu.cn
Novel insight into the formation of alpha ''-martensite and omega-phase with cluster structure in metastable Ti-Mo alloys
点击次数:
论文类型:期刊论文
发表时间:2019-02-01
发表刊物:ACTA MATERIALIA
收录刊物:SCIE、Scopus
卷号:164
页面范围:322-333
ISSN号:1359-6454
关键字:Metastable titanium alloy; Cluster structure; First-principles; Phase transformation mechanism; Elastic property
摘要:On the basis of the "-Mo-Ti-Mo-" linear unit along the specific <111>(beta), <110>(beta), and <100>(beta) directions, the cluster structures of alpha ''-martensite and omega-phase were constructed in metastable Ti-Mo alloys to examine phase stability, elastic property, and crystal structure evolution by first-principles calculations combined with experimental analyses. With the increase in Mo content, the orthorhombicity and shuffle magnitude of {110}(beta) plane along <110>(beta) direction decreased, leading to change in the crystal structure of martensite from hexagonal close-packed to orthorhombic structure; the displacive collapse degree of {112}(beta) plane along <111>(beta) direction decreased, indicating that the crystal structure of omega-phase transited from hexagonal to trigonal structure. The softening effect of tetragonal shear elastic constant (C') and Young's modulus (E-100) was favorable for the shuffle and shear components of alpha ''-martensite, respectively, whereas that of shear modulus (G(111)) was beneficial to the collapse component of omega-phase. The competition among C', E-100, and G(111) affected the phase transformation following the sequence of hexagonal close-packed alpha'-martensite, orthorhombic alpha ''-martensite, hexagonal omega-phase, and trigonal omega-phase in metastable titanium alloys. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.