闵小华

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:埼玉大学

学位:博士

所在单位:材料科学与工程学院

学科:材料学. 材料加工工程

办公地点:材料馆304室

联系方式:辽宁省大连市甘井子区凌工路2号 大连理工大学 材料科学与工程学院 116024 办公电话0411-84708189 手机13149898722

电子邮箱:minxiaohua@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Microstructure, mechanical properties and springback behaviour of Ti-6Al-4V alloy connection rod for spinal fixation device

点击次数:

论文类型:期刊论文

发表时间:2019-01-01

发表刊物:MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS

收录刊物:SCIE、PubMed、Scopus

卷号:94

页面范围:811-820

ISSN号:0928-4931

关键字:Titanium alloy; Connection rod of spinal fixation device; Strength; Modulus; Springback behaviour

摘要:The effect of annealing condition on microstructure, mechanical properties and springback behaviour was examined in the connection rod of Ti-6Al-4V alloy for spinal fixation devices. Compared with the deformed microstructure in the sample before annealing, relatively few equiaxed grains were present after annealing at 1003 K after 1.8 ks, and a considerable amount appeared at 7.2 ks. When annealing time was extended to 36 ks, the recrystallised grains further grew. Vickers hardness, tensile strength and bending strength decreased with increasing annealing time, whereas the elastic and bending moduli showed no significant change with annealing time of up to 7.2 ks and then slightly decreased at 36 ks. The springback ratio was closely associated with strength and modulus and applied bending deflection. The springback ratio reached the highest and lowest values in the sample before and after annealing for 7.2 ks, respectively. A good combination of strength, modulus and springback ratio was obtained in the sample after annealing for 7.2 ks.