徐敏

个人信息Personal Information

副教授

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:数学科学学院

学科:计算数学. 应用数学

电子邮箱:wolf_hsu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Convergence Analysis of an Empirical Eigenfunction-Based Ranking Algorithm with Truncated Sparsity

点击次数:

论文类型:期刊论文

发表时间:2014-01-01

发表刊物:ABSTRACT AND APPLIED ANALYSIS

收录刊物:SCIE

ISSN号:1085-3375

摘要:We study an empirical eigenfunction-based algorithm for ranking with a data dependent hypothesis space. The space is spanned by certain empirical eigenfunctions which we select by using a truncated parameter. We establish the representer theorem and convergence analysis of the algorithm. In particular, we show that under a mild condition, the algorithm produces a satisfactory convergence rate as well as sparse representations with respect to the empirical eigenfunctions.