徐敏
个人信息Personal Information
副教授
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:数学科学学院
学科:计算数学. 应用数学
电子邮箱:wolf_hsu@dlut.edu.cn
扫描关注
Convergence Analysis of an Empirical Eigenfunction-Based Ranking Algorithm with Truncated Sparsity
点击次数:
论文类型:期刊论文
发表时间:2014-01-01
发表刊物:ABSTRACT AND APPLIED ANALYSIS
收录刊物:SCIE
ISSN号:1085-3375
摘要:We study an empirical eigenfunction-based algorithm for ranking with a data dependent hypothesis space. The space is spanned by certain empirical eigenfunctions which we select by using a truncated parameter. We establish the representer theorem and convergence analysis of the algorithm. In particular, we show that under a mild condition, the algorithm produces a satisfactory convergence rate as well as sparse representations with respect to the empirical eigenfunctions.