个人信息Personal Information
副教授
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:数学科学学院
学科:计算数学
电子邮箱:mzhl@dlut.edu.cn
Nonconforming polynomial mixed finite element for the Brinkman problem over quadrilateral meshes
点击次数:
论文类型:期刊论文
发表时间:2018-08-15
发表刊物:COMPUTERS & MATHEMATICS WITH APPLICATIONS
收录刊物:SCIE
卷号:76
期号:4
页面范围:877-892
ISSN号:0898-1221
关键字:Nonconforming finite element; Polynomial; Quadrilateral meshes; Uniform convergence; Discrete de Rham complex
摘要:This work provides a new mixed finite element method for the Brinkman problem over arbitrary convex quadrilateral meshes. The velocity is approximated by piecewise polynomial element space which is H(div)-nonconforming, and the pressure is approximated by piecewise constant. We give the convergence analysis of our element, and especially show the robustness with respect to the Darcy limit. Moreover, via a discrete de Rham complex, a higher-order approximation error term is obtained for incompressible flow. Numerical examples verify our theoretical findings. (C) 2018 Elsevier Ltd. All rights reserved.