个人信息Personal Information
副教授
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:数学科学学院
学科:计算数学
电子邮箱:mzhl@dlut.edu.cn
Analysis of two low-order equal-order finite element pairs for Stokes equations over quadrilaterals
点击次数:
论文类型:期刊论文
发表时间:2020-01-15
发表刊物:JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
收录刊物:EI、SCIE
卷号:364
ISSN号:0377-0427
关键字:Quadrilateral P-1-nonconforming element; Stokes equations; Stability; Superconvergence
摘要:Two quadrilateral low-order equal-order finite element schemes are analyzed for Stokes equations. Both of these schemes adopt the quadrilateral P-1-nonconforming finite element to approximate the pressure over a coarser mesh. The velocity spaces are constructed over a finer mesh, where the standard Q(1)-conforming element space and the quadrilateral P-1 -nonconforming element space are selected, respectively. The stability assertion is given for each pair. Moreover, the superconvergence property of the pressure is obtained over uniform rectangular meshes. All the analyses above are verified by numerical tests. (C) 2019 Elsevier B.V. All rights reserved.