个人信息Personal Information
副教授
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:数学科学学院
学科:计算数学
电子邮箱:mzhl@dlut.edu.cn
A New Cubic Nonconforming Finite Element on Rectangles
点击次数:
论文类型:期刊论文
发表时间:2015-05-01
发表刊物:NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
收录刊物:SCIE、EI、Scopus
卷号:31
期号:3
页面范围:691-705
ISSN号:0749-159X
关键字:nonconforming finite element; optimal error estimates; quadrilateral mesh
摘要:A new nonconforming rectangle element with cubic convergence for the energy norm is introduced. The degrees of freedom (DOFs) are defined by the 12 values at the three Gauss points on each of the four edges. Due to the existence of one linear relation among the above DOFs, it turns out the DOFs are 11. The nonconforming element consists of . We count the corresponding dimension for Dirichlet and Neumann boundary value problems of second-order elliptic problems. We also present the optimal error estimates in both broken energy and norms. Finally, numerical examples match our theoretical results very well. (c) 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 691-705, 2015