Indexed by:Journal Papers
Date of Publication:2018-12-15
Journal:COMPOSITE STRUCTURES
Included Journals:SCIE
Volume:206
Page Number:888-902
ISSN No.:0263-8223
Key Words:Variable-stiffness aircraft panel; Cutout; Isogeometric method; Level set method; Gradient-based optimization
Abstract:For composite panels with cutouts, curvilinear fiber path can adjust the in-plane stiffness distribution to increase the buckling resistance, but it results in huge computational cost for the buckling analysis when FEA is employed. In this study, variable-stiffness panels with cutouts are analyzed via isogeometric method, where cutouts are represented by the level set method. The method for suppressing artificial buckling modes is proposed to improve the prediction accuracy. Moreover, the analytical sensitivity is derived to facilitate fiber path optimization, and a new bi-level optimization framework considering manufacturing constraints is established. Finally, the proposed method is verified by variable-stiffness aircraft panel with multiple cutouts, which can not only provide an accurate prediction of buckling load, but also exhibit high convergence rate and low computational cost for fiber path optimization.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Main positions:Professor
Other Post:工程力学系主任
Gender:Male
Alma Mater:Dalian University of Technology
Degree:Doctoral Degree
School/Department:Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment
Discipline:Solid Mechanics. Aerospace Mechanics and Engineering. Computational Mechanics. Engineering Mechanics
Contact Information:haopeng@dlut.edu.cn
Open time:..
The Last Update Time:..