Indexed by:Journal Papers
Date of Publication:2019-09-01
Journal:COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
Included Journals:SCIE、EI
Volume:354
Page Number:181-212
ISSN No.:0045-7825
Key Words:Isogeometric analysis; Variable-stiffness shells; Complex shells; Fiber path optimization; Shape optimization; Collaborative optimization
Abstract:Composite shells with complex geometry are widely used in aerospace structures. Due to the complexity of geometry and curvilinear fiber path, the analysis and optimization based on finite element analysis (FEA) for complex variable-stiffness (VS) shells is extremely time-consuming. By comparing with FEA, isogeometric analysis (IGA) exhibits higher prediction efficiency of buckling load. In this work, the formula of geometric stiffness matrix for complex VS shells is derived for the first time based on degenerated shell method using IGA, which is the basis of performing linear buckling analysis. Then, a new variable curvature quasi-linear function (VCQLF) to describe curvilinear fiber path is proposed, which can further expand the design space of VS shells. After that, two frameworks for shape optimization of complex shells are put forward and then compared, and it is found that the one based on LOFT function can provide representative control variables of shape and effectively reduces the number of design variables for complex shells. Finally, a novel collaborative optimization framework of fiber path and shell shape using IGA is established. By comparison of traditional methods, it is demonstrated that the proposed framework can greatly improve the efficiency of optimization and fully explore the buckling load of complex VS shells. (C) 2019 Elsevier B.V. All rights reserved.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Main positions:Professor
Other Post:工程力学系主任
Gender:Male
Alma Mater:Dalian University of Technology
Degree:Doctoral Degree
School/Department:Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment
Discipline:Solid Mechanics. Aerospace Mechanics and Engineering. Computational Mechanics. Engineering Mechanics
Contact Information:haopeng@dlut.edu.cn
Open time:..
The Last Update Time:..