扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 陈平 ( 教授 )

    的个人主页 http://faculty.dlut.edu.cn/pingchen/zh_CN/index.htm

  •   教授   博士生导师   硕士生导师
  • 任职 : 辽宁省先进聚合物基复合材料重点实验室主任。
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
Surface modification of high performance PBO fibers using radio frequency argon plasma

点击次数:
论文类型:期刊论文
发表时间:2012-04-15
发表刊物:SURFACE & COATINGS TECHNOLOGY
收录刊物:SCIE、EI
卷号:206
期号:16
页面范围:3534-3541
ISSN号:0257-8972
关键字:PBO fiber; Argon plasma; Surface properties; Adhesion
摘要:The radio frequency argon plasma was applied to improve surface properties of the PBO fiber. The fiber tensile strength was measured, and the surface chemical components, topography and wettability were analyzed by X-ray photoelectron spectroscopy (XPS), atomic force microscopy and dynamic contact angle analysis (DCAA), respectively. Results suggested that over 90% of the fiber tensile strength was reserved after treatment at lower power levels. The surface oxygen atoms increased with a very small extent and the O/C ratio increased from 0.25 to 0.29. The plasma sputtering caused scission of chemical bonds and damage to the surface crystallizing layers, and thus created many active functional groups and roughened surface. However, at high power conditions the more effective ablation and sputtering effects dramatically reduced the tensile strength, surface oxygen contents and roughness. The fiber surface wettability was markedly increased as a result of the functionalization and roughening effects, but the calculated polar and dispersive free energy did not agree well with the measured surface chemical components due to the different effective depths of the surface layers analyzed by DCAA and XPS. The increased roughness was considered to be another reason. The treated fiber exhibited better adhesion with bismaleimide resin, but the maximum interlaminar shear strength of the PBO/bismaleimide composite could not be reproduced by increasing the treatment time at lower power level conditions. (C) 2012 Elsevier B.V. All rights reserved.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学