location: Current position: Home >> Scientific Research >> Paper Publications

空气源电化学连续分离制氧(Ⅰ):单池性能优化

Hits:

Indexed by:期刊论文

Date of Publication:2016-01-20

Journal:化工学报

Included Journals:EI、PKU、ISTIC、CSCD

Volume:5

Issue:5

Page Number:2022-2032

ISSN No.:0438-1157

Key Words:制氧;质子交换膜燃料电池;固体聚合物电解质电解池;电化学;分离;优化

Abstract:随着工业化进程高速发展,尤其受近期"雾霾"的影响,大气环境质量越来越受重视.空气中氧气补给是提高空气质量的关键方法之一.相对于传统制氧技术(如空气物理分离法、化学法以及水电解法等),空气源电化学连续分离制纯氧技术具有空气源分离制纯氧、能量效率高、连续运行、环境友好、安静、易规模放大等特点,可实现室内外场合应用.该技术的关键部件是质子交换膜燃料电池和固体聚合物电解质电解池(简称燃料电池和电解池).分别考察了其单池操作条件对性能的影响,如燃料电池的操作温度、相对湿度、气体利用率和压强,以及电解池的供水方式、循环水流速、操作温度等.测试了燃料电池单池极化曲线、电化学交流阻抗谱,并计算了膜电导率和活化能.对极化曲线进行拟合得出塔菲尔(Tafel)斜率、氧还原反应交换电流密度i0以及传质影响参数m、n等基本动力学参数.结果表明,氢空燃料电池单池最优化条件为:常压条件下,操作温度为60℃,峰值功率密度可达0.42 W·cm?2,膜面电阻为77 m?·cm2,膜电导率为41.4 mS·cm?1.Tafel斜率受温度影响较小,在120 mV·dec?1左右,但受相对湿度影响较大.相对湿度对单池性能影响显著.电解池单池最优化操作条件为:操作温度对性能影响较大且最佳为65℃,膜面电阻为1.08?·cm2,膜电导率为11.7 mS·cm?1.循环水流速对性能影响较小.供水方式的优劣次序为两极供水≈阳极供水>阴极供水.在上述实验条件下,燃料电池中Nafion?211膜和电解池中Nafion?115膜的活化能计算值分别为3.75和4.61 kJ·mol?1.基于燃料电池和电解池的单池电化学性能优化,研究结果可为后续的制氧机系统中电池堆的实施提供实验依据.

Pre One:Warm plasma catalytic reforming of biogas in a heat-insulated reactor: Dramatic energy efficiency and catalyst auto-reduction

Next One:CO2 reduction with hydrogen in a magnetic-drive plasma shade