• 更多栏目

    齐民

    • 教授     博士生导师   硕士生导师
    • 主要任职:Professor
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:材料科学与工程学院
    • 学科:材料学. 生物医学工程
    • 办公地点:材料学院222房间
    • 联系方式:84708441
    • 电子邮箱:minqi@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Enzymatic degradation and radiopaque attenuation of iodinated poly(ester-urethane)s with inherent radiopacity

    点击次数:

    论文类型:期刊论文

    发表时间:2014-11-01

    发表刊物:JOURNAL OF MATERIALS SCIENCE

    收录刊物:SCIE、EI

    卷号:49

    期号:22

    页面范围:7834-7843

    ISSN号:0022-2461

    摘要:Biodegradable radiopaque iodinated polyurethanes (I-PUs) based on poly(epsilon-caprolactone) diol (PCL) as soft segment have been synthesized using 4,4'-isopropylidene-(2,6-diiodophenol) (IBPA) as chain extender. In order to elucidate the effect of iodinated chain extender on degradation properties of I-PUs, a control polyurethane with bisphenol A as chain extender was also synthesized. The enzymatic degradation study of these I-PUs was carried out using phosphate-buffered solution (pH 7.4) at 37 A degrees C. The mass loss, surface morphology, iodine content, radiopacity, hydrophilicity and thermal properties of the samples during degradation were characterized with scanning electron microscopy (SEM), energy-dispersive X-ray detector (EDX), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and static contact angle. Results of enzymatic degradation during 3 months indicated that the incorporation of iodinated chain extender greatly hindered the in vitro degradation of I-PUs compared with the control PU-C sample. The reason for the retarded degradation was attributed to the bulky iodine atoms on IBPA chain extender with steric hindrance, which decreased the surface hydrophilicity of I-PUs and slowed water/lipase diffusion rate. Moreover, the radiopacity of I-PUs does not sharply attenuate after long-time degradation, which is useful for interventional biomedical applications.