• 更多栏目

    仇森

    • 副教授     博士生导师   硕士生导师
    • 主要任职:控制科学与工程学院副院长
    • 其他任职:中国电子教育学会高等教育分会理事、辽宁省药学会专委会副主任委员
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:控制科学与工程学院
    • 学科:控制理论与控制工程
    • 办公地点:海山楼 A11326
    • 联系方式:+86 壹355683491陆
    • 电子邮箱:qiu@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Affective actions recognition in dyadic interactions based on generative and discriminative models

    点击次数:

    论文类型:期刊论文

    发表时间:2021-01-10

    发表刊物:SENSOR REVIEW

    卷号:40

    期号:5

    页面范围:605-615

    ISSN号:0260-2288

    关键字:Dyadic interaction; Body sensor networks; Affective actions

    摘要:Purpose Dyadic interactions are significant for human life. Most body sensor networks-based research studies focus on daily actions, but few works have been done to recognize affective actions during interactions. The purpose of this paper is to analyze and recognize affective actions collected from dyadic interactions. Design/methodology/approach A framework that combines hidden Markov models (HMMs) and k-nearest neighbor (kNN) using Fisher kernel learning is presented in this paper. Furthermore, different features are considered according to the interaction situations (positive situation and negative situation). Findings Three experiments are conducted in this paper. Experimental results demonstrate that the proposed Fisher kernel learning-based framework outperforms methods using Fisher kernel-based approach, using only HMMs and kNN. Practical implications The research may help to facilitate nonverbal communication. Moreover, it is important to equip social robots and animated agents with affective communication abilities. Originality/value The presented framework may gain strengths from both generative and discriminative models. Further, different features are considered based on the interaction situations.