Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Title of Paper:基于卷积神经网络的P300事件相关电位分类识别
Hits:
Date of Publication:2018-12-20
Journal:中国生物医学工程学报
Volume:37
Issue:6
Page Number:657-664
ISSN No.:0258-8021
Key Words:P300;深度学习;卷积神经网络;分类识别
Abstract:针对脑机接口系统中P300电位识别正确率不高的问题,提出一种基于改进卷积神经网络的P300事件相关电位分类识别方法.通过将传统卷积神经网络中第二个串行连接的卷积层改为3个并行连接的卷积层,可加大网络宽度,提升网络对P300信号特征提取的能力;将提取的特征经全互连层组合后,采用sigmoid函数构建P300事件相关电位分类器.针对脑机接口竞赛数据中靶刺激与非靶刺激数据量不平衡的问题,采用过抽样方式,对含有P300事件相关电位的脑电数据做部分平均来增加数据量,其训练集和测试集样本量分别为25 500和18 000.采用Adam优化方法,有监督地训练这种改进的卷积神经网络.结果表明,相比传统的卷积神经网络,该方法在实验次数大于11次时,字符识别正确率均高于95%,这对于脑机接口的应用具有重要的意义.
Open time:..
The Last Update Time: ..