QIU Tianshuang   

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates

MORE> Recommended Ph.D.Supervisor Recommended MA Supervisor Institutional Repository Personal Page
Language:English

Paper Publications

Title of Paper:Robust visual tracking via incremental low-rank features learning

Hits:

Date of Publication:2014-05-05

Journal:NEUROCOMPUTING

Included Journals:SCIE、EI、Scopus

Volume:131

Page Number:237-247

ISSN No.:0925-2312

Key Words:Low-rank features; Visual tracking; Incremental subspace learning; Occlusion detection

Abstract:In this paper, we address robust visual tracking as an incremental low-rank features learning problem in a particle filter framework. Our new algorithm first learns the observation model by extracting low-rank features and the corresponding subspace basis of the object from the initial several frames. Then the low-rank features and sparse errors can be incrementally updated using an l(1) norm minimization model. We show that the proposed strategy is actually an online extension of Robust PCA (RPCA). Thus compared with previous methods, which directly learn subspace from corrupted observations, our model can incrementally pursuit the low-rank features for the target and detect the occlusions by the sparse errors. Furthermore, the proposed reformulation of RPCA can also be considered as an illumination study on extending batch-mode low-rank techniques for more general online time series analysis tasks. Experimental results on various challenging videos validate the superiority over other state-of-the-art methods. (C) 2013 Elsevier B.V. All rights reserved.

Address: No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, P.R.C., 116024
Click:    MOBILE Version DALIAN UNIVERSITY OF TECHNOLOGY Login

Open time:..

The Last Update Time: ..