大连理工大学  登录  English 
段庆林
点赞:

副教授   博士生导师   硕士生导师

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 力学与航空航天学院

电子邮箱: qinglinduan@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Second-order accurate derivatives and integration schemes for meshfree methods

点击次数:

论文类型: 期刊论文

发表时间: 2012-10-26

发表刊物: INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING

收录刊物: SCIE、EI、Scopus

卷号: 92

期号: 4

页面范围: 399-424

ISSN号: 0029-5981

关键字: meshfree; integration; Galerkin; finite element method; elasticity; solids

摘要: The consistency condition for the nodal derivatives in traditional meshfree Galerkin methods is only the differentiation of the approximation consistency (DAC). One missing part is the consistency between a nodal shape function and its derivatives in terms of the divergence theorem in numerical forms. In this paper, a consistency framework for the meshfree nodal derivatives including the DAC and the discrete divergence consistency (DDC) is proposed. The summation of the linear DDC over the whole computational domain leads to the so-called integration constraint in the literature. A three-point integration scheme using background triangle elements is developed, in which the corrected derivatives are computed by the satisfaction of the quadratic DDC. We prove that such smoothed derivatives also meet the quadratic DAC, and therefore, the proposed scheme possesses the quadratic consistency that leads to its name QC3. Numerical results show that QC3 is the only method that can pass both the linear and the quadratic patch tests and achieves the best performances for all the four examples in terms of stability, convergence, accuracy, and efficiency among all the tested methods. Particularly, it shows a huge improvement for the existing linearly consistent one-point integration method in some examples. Copyright (c) 2012 John Wiley & Sons, Ltd.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学