曲媛媛

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:环境学院

学科:环境工程. 环境科学

办公地点:环境学院B617室

联系方式:0411-84706250

电子邮箱:qyy@dlut.edu.cn

扫描关注

论文成果

当前位置: 曲媛媛 >> 科学研究 >> 论文成果

Unveiling the biotransformation mechanism of indole in a Cupriavidus sp strain

点击次数:

论文类型:期刊论文

发表时间:2017-12-01

发表刊物:MOLECULAR MICROBIOLOGY

收录刊物:Scopus、SCIE、PubMed

卷号:106

期号:6

页面范围:905-918

ISSN号:0950-382X

关键字:2-aminobenzoyl-CoA ligase,Cupriavidus sp,biotransformation mechanism,indole,indole oxygenase

摘要:Indole, an important signaling molecule as well as a typical N-heterocyclic aromatic pollutant, is widespread in nature. However, the biotransformation mechanisms of indole are still poorly studied. Here, we sought to unlock the genetic determinants of indole biotransformation in strain Cupriavidus sp. SHE based on genomics, proteomics and functional studies. A total of 177 proteins were notably altered (118 up- and 59 downregulated) in cells grown in indole mineral salt medium when compared with that in sodium citrate medium. RT-qPCR and gene knockout assays demonstrated that an indole oxygenase gene cluster was responsible for the indole upstream metabolism. A functional indole oxygenase, termed IndA, was identified in the cluster, and its catalytic efficiency was higher than those of previously reported indole oxidation enzymes. Furthermore, the indole downstream metabolism was found to proceed via the atypical CoA-thioester pathway rather than conventional gentisate and salicylate pathways. This unusual pathway was catalyzed by a conserved 2-aminobenzoyl-CoA gene cluster, among which the 2-aminobenzoyl-CoA ligase initiated anthranilate transformation. This study unveils the genetic determinants of indole biotransformation and will provide new insights into our understanding of indole biodegradation in natural environments and its functional studies.